Diameter-Separation of Chessboard Graphs
نویسندگان
چکیده
Abstract We define the queens (resp., rooks) diameter-separation number to be minimum of pawns for which some placement those on an n × board produces a with graph rooks graph) desired diameter d . determine these numbers small values
منابع مشابه
On Diameter of Line Graphs
The diameter of a connected graph $G$, denoted by $diam(G)$, is the maximum distance between any pair of vertices of $G$. Let $L(G)$ be the line graph of $G$. We establish necessary and sufficient conditions under which for a given integer $k geq 2$, $diam(L(G)) leq k$.
متن کاملDiameter Two Graphs of Minimum Order with Given Degree Set
The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...
متن کاملOriented diameter of graphs with diameter 3
In 1978, Chvátal and Thomassen proved that every 2-edge-connected graph with diameter 2 has an orientation with diameter at most 6. They also gave general bounds on the smallest value f(d) such that every 2-edge-connected graph G with diameter d has an orientation with diameter at most f(d). For d = 3, their general bounds reduce to 8 ≤ f(3) ≤ 24. We improve these bounds to 9 ≤ f(3) ≤ 11.
متن کاملOn Harmonic Index and Diameter of Unicyclic Graphs
The Harmonic index $ H(G) $ of a graph $ G $ is defined as the sum of the weights $ dfrac{2}{d(u)+d(v)} $ of all edges $ uv $ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)} $ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound $ dfrac{H(G)}{D(G)}geq dfra...
متن کاملDiameter critical graphs
A graph is called diameter-k-critical if its diameter is k, and the removal of any edge strictly increases the diameter. In this paper, we prove several results related to a conjecture often attributed to Murty and Simon, regarding the maximum number of edges that any diameter-k-critical graph can have. In particular, we disprove a longstanding conjecture of Caccetta and Häggkvist (that in ever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Recreational mathematics magazine
سال: 2021
ISSN: ['2182-1968', '2182-1976']
DOI: https://doi.org/10.2478/rmm-2021-0008